A Semi-Supervised Clustering Method For P2P Traffic Classification

نویسنده

  • Bin Liu
چکیده

In the last years, the use of P2P applications has increased significantly and currently they represent a significant portion of the Internet traffic. In consequence of this growth, P2P traffic identification and classification are becoming increasingly important for network administrators and designers. However, this classification was not simple. Nowadays, P2P applications explicitly tried to camouflage the original traffic in an attempt to go undetected. This paper present a methodology and selection of three P2P traffic metrics and applies semi-supervised clustering to identify P2P applications. Three P2P traffic metrics: IP Address Discreteness, Success Rate of Connections and Bidirectional Connections rate had been proposed and used in this paper. The semi-supervised classification method for P2P traffic consist two steps: Particle Swarm Optimization (PSO) clustering algorithm was employed to partition a training dataset that mixed few labeled samples with abundant unlabeled samples. Then, available labeled samples were used to map the clusters to the application classes. Experimental results using traffic from campus showed that high P2P traffic classification accuracy had been achieved with a few labeled samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of encrypted traffic for applications based on statistical features

Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...

متن کامل

Implementation of Distance Based Semi Supervised Clustering and Probabilistic Assignment Technique for Network Traffic Classification

Network Traffic Classification is an important process in various network management activities like network planning, designing, workload characterization etc. Network traffic classification using traditional techniques such as well known port number based and payload analysis based techniques are no more effective because various applications uses port hopping and encryption technique to avoi...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Graph Based Classification of Content and Users in BitTorrent

P2P downloads still represent a large portion of today’s Internet traffic. More than 100 million users operate BitTorrent and generate more than 30% of the total Internet traffic [7]. Recently, a significant research effort has been done to develop tools for automatic classification of Internet traffic by application [9, 8, 11]. The purpose of the present work is to provide a framework for subc...

متن کامل

Extracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering

Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JNW

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011